Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dermatol ; 51(3): 419-428, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38087767

RESUMO

The gut microbiota changes greatly at the onset of disease, and the importance of intestinal bacteria has been highlighted. The gut microbiota also changes greatly with aging. Aging causes skin dryness, but it is not known how changes in the gut microbiota with aging affects the expression of genes that are important for maintaining skin function. In this study, we investigated how age-related changes in gut microbiota affect the expression of genes that regulate skin function. The gut microbiotas from young mice and aged mice were transplanted into germ-free mice (fecal microbiota transplantation [FMT]). These recipient mice were designated FMT-young mice and FMT-old mice respectively, and the expression levels of genes important for maintaining skin function were analyzed. The dermal water content was significantly lower in old mice than that in young mice, indicating dry skin. The gut microbiota significantly differed between old mice and young mice. The water channel aquaporin-3 (Aqp3) expression level in the skin of FMT-old mice was significantly higher than that in FMT-young mice. In addition, among the genes that play an important role in maintaining skin function, the expression levels of those encoding ceramide-degrading enzyme, ceramide synthase, hyaluronic acid-degrading enzyme, and Type I collagen were also significantly higher in FMT-old mice than in FMT-young mice. It was revealed that the gut microbiota, which changes with age, regulates the expression levels of genes related to skin function, including AQP3.


Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Microbioma Gastrointestinal/genética , Transplante de Microbiota Fecal
2.
Geriatr Gerontol Int ; 23(12): 951-957, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37908183

RESUMO

AIM: Senescence-accelerated mouse prone (SAMP) mice can reproduce the same conditions as normal aging mice in a short period. Although SAMP mice have been widely used in aging research, research on skin function in SAMP mice is lacking. In this study, to investigate the skin function of SAMP mice, we analyzed the expression of genes important for maintaining skin function. METHODS: Eight-month-old SAMP mice and senescence-accelerated mouse resistant (SAMR) mice with normal aging were used. The expression levels of various functional genes in the skin were analyzed. RESULTS: The dermal water content of SAMP mice was significantly lower than that of SAMR mice, indicating dry skin. The mRNA expression levels of elastin (Ela), filaggrin (Flg), loricrin (Lor), collagen type I alpha 1 chain (Col1a1) and Col1a2 in the skin of SAMP mice were all significantly decreased compared with those of SAMR mice. Hyaluronan-degrading enzyme (Hyal1) expression levels in SAMP mice were similar to those in SAMR mice, but hyaluronan synthase (Has2) levels were significantly decreased. In addition, the expression level of aquaporin-3 in the skin of SAMP mice was significantly decreased at both the mRNA and protein levels. CONCLUSIONS: In the skin of SAMP mice, the expression levels of various skin function-regulating genes were decreased, and this phenomenon might cause skin dryness. The SAMP mouse could be a tool for analyzing skin aging. Geriatr Gerontol Int 2023; 23: 951-957.


Assuntos
Envelhecimento , Colágeno Tipo I , Camundongos , Animais , Envelhecimento/genética , Colágeno Tipo I/genética , Modelos Animais de Doenças , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
J Pharmacol Sci ; 152(3): 167-177, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37257944

RESUMO

Cisplatin, a platinum-based anticancer drug used frequently in cancer treatment, causes skeletal muscle atrophy. It was predicted that the proteolytic pathway is enhanced as the mechanism of this atrophy. Therefore, we investigated whether a platinum-based anticancer drug affects the expression of the major proteins of skeletal muscle, myosin heavy chain (MyHC). Mice were injected with cisplatin or oxaliplatin for four consecutive days. C2C12 myotubes were treated using cisplatin and oxaliplatin. Administration of platinum-based anticancer drug reduced quadriceps mass and muscle strength compared to the control group. Protein levels of all MyHC isoforms were reduced in the platinum-based anticancer drug groups. However, only Myh2 (MyHC-IIa) gene expression in skeletal muscle of mice treated with platinum-based anticancer drugs was found to be reduced. Treatment of C2C12 myotubes with platinum-based anticancer drugs reduced the protein levels of all MyHCs, and treatment with the proteasome inhibitor MG-132 restored this reduction. The expression of Mef2c, which was predicted to act upstream of Myh2, was reduced in the skeletal muscle of mice treated systemically with platinum-based anticancer drug. Degradation of skeletal muscle MyHCs by proteasomes may be a factor that plays an important role in muscle mass loss in platinum-based anticancer drug-induced muscle atrophy.


Assuntos
Antineoplásicos , Cadeias Pesadas de Miosina , Camundongos , Animais , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Regulação para Baixo , Cisplatino , Platina/metabolismo , Oxaliplatina , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Antineoplásicos/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Atrofia/metabolismo
4.
Sci Rep ; 13(1): 6537, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085597

RESUMO

Irinotecan (CPT-11) is an anticancer drug with indications for use in treating various cancers, but severe diarrhea develops as a side effect. We investigated the effects of green tea extract (GTE) on CPT-11-induced diarrhea, focusing on ß-glucuronidase and intestinal UGT1A1. When CPT-11 was administered to rats alone, the fecal water content was approximately 3.5-fold higher in this group than in the control group, and diarrhea developed. The fecal water content in the GTE-treated group was significantly higher than that in the control group, but the difference was smaller than that between the group treated with CPT-11 alone and the control group, and diarrhea improved. When CPT-11 was administered alone, the abundances of Bacteroides fragilis and Escherichia coli, which are ß-glucuronidase-producing bacteria, increased and interleukin-6 and interleukin-1ß mRNA levels in the colon increased, but GTE suppressed these increases. CPT-11 decreased colon UGT1A1 and short-chain fatty acid levels; however, this decrease was suppressed in the GTE-treated group. The findings that GTE decreases the abundance of ß-glucuronidase-producing bacteria and increases colon UGT1A1 levels, thereby decreasing the production of the active metabolite SN-38 in the intestinal tract, indicate that GTE ameliorates CPT-11-induced diarrhea.


Assuntos
Antineoplásicos Fitogênicos , Microbioma Gastrointestinal , Ratos , Animais , Irinotecano/efeitos adversos , Camptotecina , Antineoplásicos Fitogênicos/uso terapêutico , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Diarreia/prevenção & controle , Bactérias/metabolismo , Antioxidantes/uso terapêutico , Glucuronidase/genética , Glucuronidase/metabolismo , Chá/efeitos adversos
5.
Food Sci Nutr ; 11(2): 1127-1133, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36789055

RESUMO

In recent years, the development of functional foods targeting gastrointestinal disorders has been in progress. Partially hydrolyzed guar gum (PHGG), which is a water-soluble dietary fiber, is known to have a constipation-improving effect. However, many aspects of the mechanism remain unclear. In this study, we investigated the role of aquaporin-3 (AQP3), which regulates the water content of feces in ameliorative effect of PHGG on constipation. Rats were allowed to freely consume a normal diet or a diet containing 5% PHGG for 14 days, and defecation parameters were measured. We also analyzed the expression levels of genes involved in water transport in the colon. The defecation frequency and volume of rats treated with PHGG were not different from those from the control group, but the fecal water content was significantly increased, and soft stools were observed. The expressions of claudin-1, tight junction protein-1, and cadherin-1, which are involved in tight junctions or adherens junctions, were almost the same in the PHGG-treated group and the control group. The expression level of AQP3 in the colon was significantly decreased in the PHGG-treated group. In this study, PHGG decreased the colonic AQP3 expression, thereby suppressing water transport from the luminal side to the vascular side and improving constipation.

6.
Mol Biol Rep ; 49(11): 10175-10181, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36030474

RESUMO

BACKGROUND: Chimpi, the dried peel of Citrus unshiu or Citrus reticulata, has various pharmacological effects. Chimpi extract was recently shown to affect the skin, including its inhibitory effect against atopic dermatitis. In this study, we analyzed the effects of Chimpi extract on the functional molecule aquaporin-3 (AQP3), which is involved in water transport and cell migration in the skin. METHODS AND RESULTS: Chimpi extract was added to HaCaT human skin keratinocytes, and the AQP3 expression level was analyzed. A wound healing assay was performed to evaluate the effect of Chimpi extract on cell migration. The components of Chimpi extract and fractions obtained by liquid-liquid distribution studies were added to HaCaT cells, and AQP3 expression was analyzed. Chimpi extract significantly increased AQP3 expression in HaCaT cells at both the mRNA and protein levels. Immunocytochemical staining revealed that Chimpi extract also promoted the transfer of AQP3 to the cell membrane. Furthermore, Chimpi extract enhanced cell migration. Hesperidin, narirutin, and nobiletin did not increase AQP3 levels. Although the components contained in the fractions obtained from the chloroform, butanol, and water layer increased AQP3, the active components could not be identified. CONCLUSIONS: These results reveal that Chimpi extract may increase AQP3 levels in keratinocytes and increase the dermal water content. Therefore, Chimpi extract may be effective for the management of dry skin.


Assuntos
Aquaporina 3 , Citrus , Humanos , Aquaporina 3/genética , Aquaporina 3/metabolismo , Células Cultivadas , Queratinócitos/metabolismo , Água/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
7.
Biochem Pharmacol ; 204: 115234, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041542

RESUMO

Patients with cancer often experience muscle atrophy, which worsens their prognosis. Decreased muscle regenerative capacity plays an important role in the complex processes involved in muscle atrophy. Administration of cisplatin, a cancer chemotherapeutic agent, has been implicated as a cause of muscle atrophy. In this study, we examined whether cisplatin affects the differentiation of myoblasts into myotubes. We treated C2C12 myoblasts with a differentiation medium containing cisplatin and its vehicle during for 8 days and observed the changes in the expression of myosin heavy chain (MyHC) and myogenin in the myoblasts. Cisplatin was injected in mice for 4 consecutive days; on Day 5, the mice quadriceps muscles were sampled and examined. The expression of MyHCs increased and that of myogenin decreased after cisplatin treatment. The secretion of acidic cysteine-rich proteins (e.g., Sparc proteins) reportedly promotes C2C12 myoblast differentiation. Therefore, we investigated the Sparc family gene expression during myogenesis in C2C12 myoblasts after cisplatin treatment. Of all the genes investigated, Sparc-like protein 1 (Sparcl1) expression was significantly suppressed by cisplatin on Days 4-8. Simultaneous treatment with recombinant mouse Sparcl1 almost inhibited the cisplatin-induced suppression of total MyHC and myogenin protein levels. Moreover, Sparcl1 expression decreased in the skeletal muscles of mice, leading to cisplatin-induced muscle atrophy. Our results suggest that cisplatin-induced myogenesis suppression causes muscle atrophy and inhibits the expression of Sparcl1, which promotes C2C12 cell differentiation during myogenesis.


Assuntos
Proteínas de Ligação ao Cálcio , Cisplatino , Proteínas da Matriz Extracelular , Cadeias Pesadas de Miosina , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Cisplatino/farmacologia , Cisteína/metabolismo , Regulação para Baixo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/metabolismo , Mioblastos/metabolismo , Miogenina/genética , Miogenina/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo
8.
Biol Pharm Bull ; 45(8): 1208-1212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35908904

RESUMO

We have previously reported that swellings caused by haptens, such as 2,4,6-trinitrochlorobenzene (TNCB), may be associated with the extracellular signal-regulated kinase (ERK)-induced proliferation pathway. However, the involvement of the Spred/Sprouty family as critical negative regulators of the Ras/Raf/ERK signaling pathway at disease sites is not well-established. Thus, in the present study, the effects of hapten-challenge on the expression levels of genes and proteins associated with the Spred/Sprouty family in the ear of mice were investigated. The activation of ERK and epidermal growth factor receptor (EGFR) tyrosine kinase was inhibited by their selective inhibitors, namely, U0126 and PD168393, respectively. Twenty-four hours after the final challenge by the haptens TNCB, 2,4-dinitrofluorobenzene, or oxazolone, ear thickness was augmented by challenge with all haptens and the gene expression levels of Spred1, Spred2, Sprouty1, and Sprouty2 in swelling induced by all haptens were significantly decreased. Furthermore, Spred2, Sprouty1, and Sprouty2 genes were decreased in the epidermis and dermis of the TNCB-challenged ear. In conclusion, it is possible that the mechanism of hapten-challenge-induced skin thickening involves not only the enhancement of cell proliferative functions via the activation of ERK by EGFR tyrosine kinase activation but also the decreases expression of Spred/Sprouty family members.


Assuntos
Dermatite de Contato , Proteínas Repressoras , Animais , Receptores ErbB/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Cloreto de Picrila , Proteínas Tirosina Quinases , Proteínas Repressoras/metabolismo
9.
Biol Pharm Bull ; 45(7): 910-918, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35786599

RESUMO

Cisplatin is a chemotherapy drug used to treat a variety of cancers. Muscle loss in cancer patients is associated with increased cancer-related mortality. Previously, we suggested that cisplatin administration increases the atrophic gene expressions of ubiquitin E3 ligases, such as atrogin-1 and muscle RING finger-1 (MuRF1), which may lead to muscle atrophy. In this study, C57BL/6J mice were treated with cisplatin (3 mg/kg, intraperitoneally) or saline for 4 consecutive days. Twenty-four hours after the final injection of cisplatin, quadriceps muscles were removed from the mice. The gene expression of Psma and Psmb, which comprise the 20S proteasome, was upregulated by cisplatin administration in the quadriceps muscle of mouse. Systemic administration of cisplatin significantly reduced not only the quadriceps muscle mass but also the diameter of the myofibers. In addition, bortezomib (0.125 mg/kg, intraperitoneally) was administered 30 min before each cisplatin treatment. The co-administration of bortezomib, a proteasome inhibitor, significantly recovered the reductions in the mass of quadriceps and myofiber diameter, although it did not recover the decline in the forelimb and forepaw strength induced by cisplatin. Increased 20S proteasome abundance may play a significant role in the development of cisplatin-induced muscle atrophy. During cisplatin-induced skeletal muscle atrophy, different mechanisms may be involved between loss of muscle mass and strength. In addition, it is suggested that bortezomib has essentially no effect on cisplatin-induced muscle atrophy.


Assuntos
Cisplatino , Complexo de Endopeptidases do Proteassoma , Animais , Bortezomib , Camundongos , Camundongos Endogâmicos C57BL , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico
10.
J Nutr Biochem ; 103: 108953, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35121023

RESUMO

Previously it was shown that cisplatin causes muscle atrophy. Under this condition, cisplatin increased the expression of atorogenes, such as muscle ring finger 1 and atrogin-1 (also known as muscle atrophy F-box protein), in mouse skeletal muscle. It was reported recently that ubiquitin (Ub) and ubiquitinated protein levels in skeletal muscle were also up-regulated in cisplatin-induced muscle atrophy, and cisplatin-induced ubiquitinated proteins were degraded by the 26S proteasome pathway. Eicosapentaenoic acid (EPA) is effective against skeletal muscle atrophy in mice. However, it is unclear how EPA suppresses the Ub-proteasome pathway. In this study, the effect of EPA on cisplatin-induced muscle atrophy in mice was examined. Mice were intraperitoneally injected with cisplatin or vehicle control once daily for 4 d. EPA or its vehicle was orally administered 30 min before cisplatin administration. Cisplatin systemic administration induced decrease in muscle mass, myofiber diameter, and increase in Ub genes and ubiquitinated proteins in mouse skeletal muscle were recovered by co-treatment with EPA. However, weight loss and up-regulated atrogenes induced by cisplatin were not changed by co-treatment with EPA in skeletal muscle. In this study, EPA attenuated cisplatin-induced muscle atrophy via down-regulation of up-regulated Ub gene expression. Although further clinical studies are needed, EPA administration can be effective in the development of muscle atrophy in cisplatin-treated patients.


Assuntos
Cisplatino , Ácido Eicosapentaenoico , Animais , Cisplatino/efeitos adversos , Ácido Eicosapentaenoico/metabolismo , Expressão Gênica , Humanos , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/prevenção & controle , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/farmacologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Proteínas Ubiquitinadas/farmacologia
11.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34577578

RESUMO

Cannabidiol (CBD) is a major nonpsychotropic component of Cannabis sativa with various pharmacological activities. In this study, we investigated the skin moisturizing effect of CBD and its mechanism. A 1% CBD solution was applied daily to skin of HR-1 hairless (Seven-week-old, male) for 14 days. The dermal water content in CBD-treated mice was significantly increased compared to that in the control group. Furthermore, no inflammatory reaction in the skin and no obvious skin disorders were observed. The mRNA expression levels of loricrin, filaggrin, collagen, hyaluronic acid degrading enzyme, hyaluronic acid synthase, ceramide degrading enzyme, and ceramide synthase in the skin were not affected by the application of CBD. However, only aquaporin-3 (AQP3), a member of the aquaporin family, showed significantly higher levels in the CBD-treated group than in the control group at both the mRNA and protein levels. It was revealed that CBD has a moisturizing effect on the skin. In addition, it is possible that increased expression of AQP3, which plays an important role in skin water retention, is a contributor to the mechanism. CBD is expected to be developed in the future as a cosmetic material with a unique mechanism.

12.
J Cachexia Sarcopenia Muscle ; 12(6): 1570-1581, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34268902

RESUMO

BACKGROUND: A reduction in the skeletal muscle mass worsens the prognosis of patients with various cancers. Our previous studies indicated that cisplatin administration to mice caused muscle atrophy. This is a concern for human patients receiving cisplatin. The insulin-like growth factor 1 (IGF-1)/phosphoinositide 3-kinase (PI3K)/Akt pathway stimulates the rate of protein synthesis in skeletal muscle. Thus, IGF-I can be a central therapeutic target for preventing the loss of skeletal muscle mass in muscle atrophy, although it remains unclear whether pharmacological activation of the IGF-1/PI3K/Akt pathway attenuates muscle atrophy induced by cisplatin. In this study, we examined whether exogenous recombinant human IGF-1 attenuated cisplatin-induced muscle atrophy. METHODS: Male C57BL/6J mice (8-9 weeks old) were injected with cisplatin or saline for four consecutive days. On Day 5, quadriceps muscles were isolated. Mecasermin (recombinant human IGF-1) or the vehicle control was subcutaneously administered 30 min prior to cisplatin administration. A dietary restriction group achieving weight loss equivalent to that caused by cisplatin administration was used as a second control. C2C12 myotubes were treated with cisplatin with/without recombinant mouse IGF-1. The skeletal muscle protein synthesis/degradation pathway was analysed by histological and biochemical methods. RESULTS: Cisplatin reduced protein level of IGF-1 by about 85% compared with the vehicle group and also reduced IGF-1/PI3K/Akt signalling in skeletal muscle. Under this condition, the protein levels of muscle ring finger protein 1 (MuRF1) and atrophy gene 1 (atrogin-1) were increased in quadriceps muscles (MuRF1; 3.0 ± 0.1 folds, atrogin-1; 3.0 ± 0.3 folds, P < 0.001, respectively). The administration of a combination of cisplatin and IGF-1 significantly suppressed the cisplatin-induced downregulation of IGF-1/PI3K/Akt signalling and upregulation of MuRF1 and atrogin-1 (up to 1.6 ± 0.3 and 1.5 ± 0.4 folds, P < 0.001, respectively), resulting in diminished muscular atrophy. IGF-1 showed similar effects in cisplatin-treated C2C12 myotubes, as well as the quadriceps muscle in mice. CONCLUSIONS: The downregulation of IGF-1 expression in skeletal muscle might be one of the factors playing an important role in the development of cisplatin-induced muscular atrophy. Compensating for this downregulation with exogenous IGF-1 suggests that it could be a therapeutic target for limiting the loss of skeletal muscle mass in cisplatin-induced muscle atrophy.


Assuntos
Fator de Crescimento Insulin-Like I , Fosfatidilinositol 3-Quinases , Animais , Cisplatino/efeitos adversos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico , Ubiquitina-Proteína Ligases
13.
Healthcare (Basel) ; 9(6)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205315

RESUMO

Sasa veitchii (S. veitchii) is a traditional herb derived from the bamboo genus, which is collectively called Kumazasa. Although Kumazasa extract is believed to have various effects on the skin, there is little scientific evidence for these effects. In this study, we aimed to obtain scientific evidence regarding the wound-healing and skin-moisturizing effects of Kumazasa extract. Kumazasa extract was applied to the skin of a mouse wound model for 14 days, and the wound area and dermal water content were measured. Mice treated with Kumazasa extract had smaller wound areas than control mice. The dermal water content in the Kumazasa extract-treated group was significantly higher than that in the control group. The mRNA and protein expression levels of cutaneous aquaporin-3 (AQP3), which is involved in wound healing and increases in dermal water content, were significantly increased by treatment with Kumazasa extract. Kumazasa extract-treated HaCaT cells exhibited significantly higher AQP3 expression and p38 mitogen-activated protein kinase (MAPK) phosphorylation than control cells. With continuous application, Kumazasa extract increases AQP3 expression and exerts wound-healing and moisturizing effects. The increase in AQP3 expression elicited by Kumazasa extract may be due to enhancement of transcription via activation of p38 MAPK signaling.

14.
Biomedicines ; 9(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494453

RESUMO

Xeroderma is induced by diabetes, reducing patients' quality of life. We aimed to clarify the roles of cutaneous water channel aquaporin-3 (AQP3) in diabetic xeroderma using type 2 diabetes model db/db mice. Blood glucose levels were unchanged in 5-week-old db/db mice compared to db/+ mice (control mice), but the pathophysiology of type 2 diabetes was confirmed in 12-week-old db/db mice. The dermal water content and AQP3 expression in 5-week-old db/db mice were almost the same as those in the control mice. On the other hand, in 12-week-old db/db mice, the dermal water content and AQP3 expression were significantly decreased. The addition of glucose to HaCaT cells had no effect on AQP3, but tumor necrosis factor-α (TNF-α) decreased the AQP3 expression level. Blood TNF-α levels or skin inflammation markers in the 12-week-old db/db mice were significantly higher than those in control mice. AQP3 levels in the skin were decreased in type 2 diabetes, and this decrease in AQP3 may be one of the causes of xeroderma. Therefore, a substance that increases AQP3 may be useful for improving xeroderma. Additionally, a decrease in skin AQP3 may be triggered by inflammation. Therefore, anti-inflammatory drugs may be effective as new therapeutic agents for diabetic xerosis.

15.
Life (Basel) ; 10(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932769

RESUMO

Astaxanthin (3,3'-dihydroxy-ß,ß-carotene-4,4'-dione) is a red lipophilic pigment with strong antioxidant action. Oral or topical administration of astaxanthin has been reported to improve skin function, including increasing skin moisture. In this study, we examined the mechanism by which astaxanthin improves skin function by focusing on the water channel aquaporin-3 (AQP3), which plays important roles in maintaining skin moisture and function. When astaxanthin was added to PHK16-0b or HaCaT cells, the mRNA expression level of AQP3 increased significantly in a concentration-dependent manner in both cell lines. The AQP3 protein expression level was also confirmed to increase when astaxanthin was added to HaCaT cells. Similarly, when astaxanthin was added to 3D human epidermis model EpiSkin, AQP3 expression increased. Furthermore, when glycerol and astaxanthin were simultaneously added to EpiSkin, glycerol permeability increased significantly compared with that observed for the addition of glycerol alone. We demonstrated that astaxanthin increases AQP3 expression in the skin and enhances AQP3 activity. This result suggests that the increased AQP3 expression in the skin is associated with the increase in skin moisture by astaxanthin. Thus, we consider astaxanthin useful for treating dry skin caused by decreased AQP3 due to factors such as diabetes mellitus and aging.

16.
Toxicol Appl Pharmacol ; 403: 115165, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32738330

RESUMO

We previously demonstrated that cisplatin administration in mice induces muscle atrophy and an increase in the expression of two muscle-specific ubiquitin E3 ligase genes, muscle ring finger protein 1 (MuRF1), and atrophy gene-1 (atrogin-1), in skeletal muscle. Ubiquitination serves as a degradation signal in both the ubiquitin-proteasome and selective autophagy pathways. In the present study, we investigated changes in the expression of ubiquitin and ubiquitinated proteins and their degradation pathways. Ubiquitin and ubiquitinated protein levels were increased by cisplatin compared with those in the vehicle and dietary restriction (DR) groups. To quantify the levels of ubiquitin and ubiquitinated proteins, we conducted a dot blot assay using an anti-ubiquitin antibody. The expression of ubiquitin was also significantly increased by cisplatin compared with that in the vehicle and DR groups. Since the ubiquitin proteins were upregulated by cisplatin, we measured the mRNA levels of the ubiquitin genes: Ubb, Ubc, Rps27a, and Uba52. All these four genes were increased by cisplatin administration compared with those in both the vehicle-treated and DR groups in quadriceps muscle tissue. The anti-ubiquitin antibody-sensitive bands increased when C2C12 myotubes were treated with cisplatin. Furthermore, MG-132 (26 s proteasome inhibitor), but not bafilomycin A1 (autophagy inhibitor), caused a further increase in expression. In conclusion, ubiquitin and ubiquitinated proteins are upregulated in cisplatin-induced muscle atrophy. Cisplatin-induced ubiquitinated proteins are degraded by the 26 s proteasome pathway.


Assuntos
Cisplatino/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Atrofia Muscular/induzido quimicamente , Proteínas Ubiquitinadas/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Antineoplásicos/toxicidade , Linhagem Celular , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mioblastos/efeitos dos fármacos , Proteínas Ubiquitinadas/genética
17.
Nutrients ; 12(7)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674403

RESUMO

Whey obtained from milk fermented by the Lactobacillus helveticus CM4 strain (LHMW) has been shown to improve skin barrier function and increase skin-moisturizing factors. In this study, we investigated the effects of LHMW on melanin production to explore the additional impacts of LHMW on the skin. We treated mouse B16 melanoma cells with α-melanocyte-stimulating hormone (α-MSH) alone or simultaneously with LHMW and measured the amount of melanin. The amount of melanin in B16 cells treated with α-MSH significantly increased by 2-fold compared with that in control cells, and tyrosinase activity was also elevated. Moreover, treatment with LHMW significantly suppressed the increase in melanin content and elevation of tyrosinase activity due to α-MSH. LHMW also suppressed the α-MSH-induced increased expression of tyrosinase, tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (DCT) at the protein and mRNA levels. Furthermore, the mRNA and protein microphthalmia-associated transcription factor (MITF) expression levels were significantly increased with treatment with α-MSH alone, which were also suppressed by LHMW addition. LHMW suppression of melanin production is suggested to involve inhibition of the expression of the tyrosinase gene family by lowering the MITF expression level. LHMW may have promise as a material for cosmetics with expected clinical application in humans.


Assuntos
Produtos Fermentados do Leite , Expressão Gênica , Lactobacillus helveticus/metabolismo , Melaninas/biossíntese , Melanoma Experimental/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Leite , Monofenol Mono-Oxigenase/metabolismo , Soro do Leite , Animais , Linhagem Celular Tumoral , Cosméticos , Fermentação , Camundongos , alfa-MSH/farmacologia
18.
Foods ; 9(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545274

RESUMO

We have previously shown that acacia polyphenol (AP), which was extracted from the bark of Acacia mearnsii De Wild, exerts antiobesity, antidiabetic, and antihypertensive effects. In this study, we examined the effect of AP on atopic dermatitis. Trimellitic anhydride (TMA) was applied to the ears of mice to create model mice with atopic dermatitis. The frequency of scratching behavior in the TMA-treated group was significantly higher than that in the control group, and the expression levels of inflammatory markers (tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2) in the skin also increased. In contrast, both the frequency of scratching behavior and the expression levels of skin inflammatory markers in the AP-treated group were significantly lower than those in the TMA-treated group. The abundances of beneficial bacteria, such as Bifidobacterium spp. and Lactobacillus spp., increased in the AP-treated group compared with the TMA-treated group. Furthermore, the abundances of Bacteroides fragilis and Clostridium coccoides in the gut, which are known for anti-inflammatory properties, increased significantly with AP administration. The present results revealed that AP inhibits TMA-induced atopic dermatitis-like symptoms. In addition, the results also suggested that this effect may be associated with the mechanism of gut microbiota improvement.

19.
Biomolecules ; 10(4)2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260143

RESUMO

An adverse reaction of dry skin occurs frequently during treatment with anticancer epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). In this study, we conducted basic research to clarify the mechanism of EGFR-TKI-induced dry skin and propose new treatments or preventative measures. Dermal water content was significantly lower in the erlotinib-treated mice than in the control group. An assessment of the expression levels of functional genes in the skin revealed that only the expression of the water channel aquaporin-3 (AQP3) was significantly decreased in the erlotinib-treated group. When erlotinib was added to epidermal keratinocyte HaCaT cells, the expression levels of both AQP3 mRNA and protein decreased. Erlotinib treatment also significantly decreased the expression levels of phospho-EGFR and phospho-extracellular signal-regulated kinase (ERK), both in HaCaT cells and mouse skin. Dry skin due to erlotinib may be caused by the decreased expression of AQP3 in the skin, thereby limiting water transport from the vascular side to the corneum side. The decrease in AQP3 may also be attributable to ERK suppression via inhibition of EGFR activity by erlotinib. Therefore, substances that increase AQP3 expression may be effective for erlotinib-induced dry skin.


Assuntos
Aquaporina 3/genética , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Proteínas Quinases/efeitos adversos , Pele/efeitos dos fármacos , Animais , Linhagem Celular , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Dermatopatias/induzido quimicamente , Dermatopatias/metabolismo , Dermatopatias/patologia , Água/metabolismo
20.
J Pharmacol Sci ; 141(2): 106-110, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31679962

RESUMO

It has recently been exhibited that Rac1 expression is increased in the bronchial tissue of a murine model with repeated antigen-challenged airway hyperresponsiveness (AHR). In the present study, the role of Rac1 in endothelin-1 (ET-1)-induced bronchial contraction and myosin light chain (MLC) phosphorylation was examined in AHR mice. Enhanced reactions in AHR mice were prevented by the Rac1 inhibitor NSC23766. These findings suggest that increased activation of Rac1 might be responsible for the enhancement of the bronchial contraction induced by ET-1 in AHR.


Assuntos
Hiper-Reatividade Brônquica/metabolismo , Broncoconstrição , Endotelina-1/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Aminoquinolinas/metabolismo , Aminoquinolinas/farmacologia , Animais , Brônquios/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Músculo Liso/metabolismo , Músculo Liso/fisiopatologia , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/metabolismo , Fosforilação , Pirimidinas/metabolismo , Pirimidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...